## PHYS 3090: Practice Problems for Midterm 1

These are problems similar to or the same as ones we covered during the review session in class.
Problem 1: Let $M=\left(\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right)$. Compute $e^{M}$.
Problem 2: Let $M=\left(\begin{array}{cc}0 & -a \\ a & 0\end{array}\right)$. Compute $e^{M}$. Use your result to evaluate $e^{M}$ for $M=$ $\left(\begin{array}{cc}0 & -\pi / 2 \\ \pi / 2 & 0\end{array}\right)$.

Problem 3: Consider a diagonal matrix $M=\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right)$. Show that $e^{M}=\left(\begin{array}{cc}e^{a} & 0 \\ 0 & e^{b}\end{array}\right)$.
Problem 4: Let $\vec{u}=\binom{1}{i}$ and $\vec{v}=\binom{1+i}{1-i}$.

- Compute $|\vec{u}|$ and $|\vec{v}|$.
- Compute $\hat{u}$ and $\hat{v}$.
- Compute $\langle i u, u\rangle$. Answer: $\langle i u, u\rangle=i^{*}\langle u, u\rangle=-2 i$.
- Are $\vec{u}$ and $\vec{v}$ orthogonal? Answer: Yes.

Problem 5: Let $\vec{v}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.

- Compute $R_{y}\left(\frac{3 \pi}{4}\right) \vec{v}$.
- Compute $R_{z}(\pi) \vec{v}$.
- Compute $R_{x}\left(\frac{\pi}{2}\right) \vec{v}$.

We didn't cover normal modes and eigenvalue problems during the review, but this will be important. You should review all the spring problems from in class and HW assignment 2.

Here is a new problem on normal modes.
Problem 5: The following system of equations can come up in quantum mechanics when studying the time evolution of a system in a magnetic field:

$$
\begin{equation*}
\dot{\psi_{1}}=-i\left(a \psi_{1}+b \psi_{2}\right), \quad \dot{\psi_{2}}=-i\left(b \psi_{1}-a \psi_{2}\right), \tag{1}
\end{equation*}
$$

where $\psi_{1}(t)$ and $\psi_{2}(t)$ are functions of time $t$, and $a, b$ are constants.

- Express Eq. (1) as a matrix equation $\dot{\vec{\psi}}=-i H \vec{\psi}$, where $\vec{\psi}=\binom{\psi_{1}}{\psi_{2}}$ and $H$ is a $2 \times 2$ matrix. Answer: $H=\left(\begin{array}{cc}a & b \\ b & -a\end{array}\right)$.
- Determine the eigenvalues and eigenvectors of $H$. Answer: Eigenvalues $\lambda_{1,2}$ are $\lambda_{1}=\omega$ and $\lambda_{2}=-\omega$, where I have defined $\omega=\sqrt{a^{2}+b^{2}}$. The corresponding eigenvectors are $\vec{u}=\binom{b}{\omega-a}$ and $\vec{v}=\binom{\omega-a}{-b}$, respectively.
- Find the normal modes of the system. Answer: The normal modes are

$$
\begin{equation*}
\vec{\psi}^{(1)}(t)=\vec{u} e^{-i \omega t}, \quad \overrightarrow{\psi^{(2)}}(t)=\vec{v} e^{i \omega t} . \tag{2}
\end{equation*}
$$

You can check this by plugging into the differential equation:

$$
\begin{equation*}
\dot{\vec{\psi}}^{(1)}=-i H \vec{\psi}^{(1)}=-i \omega \vec{\psi}^{(1)}, \quad \dot{\vec{\psi}}^{(2)}=-i H \vec{\psi}^{(2)}=+i \omega \vec{\psi}^{(2)}, \tag{3}
\end{equation*}
$$

since $H \vec{u}=\omega \vec{u}$ and $H \vec{v}=-\omega \vec{v}$. This problem is tricky because it's a first order differential equation, so the solutions are exponentials instead of sines and cosines.

- Find the most general solution to the system. Answer: It is the sum of the normal modes with arbitrary coefficients

$$
\begin{equation*}
\vec{\psi}(t)=A_{1} \vec{u} e^{-i \omega t}+A_{2} \vec{v} e^{i \omega t} \tag{4}
\end{equation*}
$$

where $A_{1}, A_{2}$ are coeffients.

